
Lecture 3

Network security, TKK, Nov 2008 1

Network Security: TLS/SSLNetwork Security: TLS/SSL

Tuomas Aura, Microsoft Research, UK

2

OutlineOutline

1. More building blocks

2. Authenticated key exchange

3. Diffie-Hellman

4. Key exchange using public-key encryption

5. TLS/SSL

6. TLS handshake

7. TLS record protocol

8. TLS trust model

More building blocksMore building blocks

4

Sequence numbersSequence numbers

Sequence numbers in messages allow the recipient
to check for lost, reordered or duplicated messages

Sequence numbers in authenticated messages allow
the recipient to detect intentional message
deletion, reordering and duplication

Notation: i, SN, seq num

5

NoncesNonces
Timestamps require accurate clocks and don’t prevent rapid
replays:
A → B: TA, M, SA(TA, M) // SA(“Transfer £100”)
Checking freshness with B’s nonce:
B → A: NB

A → B: NB, M, SA(NB, M)
Alice’s nonce is a bit string selected by Alice, which is never reused
and (usually) unpredictable
Nonce implementations:

128-bit random number (unlikely to repeat)
timestamp concatenated with a random number (protects against errors
in RNG initialization and/or clock
hash of a timestamp and random number

Problematic nonces: sequence number, deterministic PRNG
output, timestamp
Nonce notations: NA , RA

6

Message notationMessage notation

The goal of TLS and many other security protocols is to
protect opaque upper-layer data

Notation: M, data, payload

Messages may be composed by concatenating byte or
bit strings

Notation: M1 ‖ M2 ‖ M3 or M1, M2, M3

Messages must have unambiguous decoding and
meaning:

E.g. “Send £100 to account 2322323.” vs. “100”‖“7244244” vs.
“1007”‖“244244” vs. “£100 a/c 2322323”

Simple concatenation of fixed-length bit fields

Self-delimiting, such as ASN.1 DER and other type-length-value
(TLV) encodings

Lecture 3

Network security, TKK, Nov 2008 2

Authenticated key Authenticated key
exchangeexchange

Basic goals for key exchangeBasic goals for key exchange
Create a good session key:

Secret i.e. known only to the intended participants
Fresh i.e. never used before

Authentication:
Mutual i.e. bidirectional authentication: each party knows who it shares
the key with (sometimes also unidirectional authentication)

Optional properties:
Entity authentication: each participant know that the other is online and
participated in the protocol
Key confirmation: each participant knows that the other knows the
session key
Protection of long-term secrets: long term secrets such as private keys or
shared master keys are not compromised even if session keys are
Forward secrecy (or perfect forward secrecy): compromise of current
secrets should not compromise past session keys
Contributory: both parties contribute to the session key; neither can
decide the session-key value alone
Non-repudiation: a party cannot deny taking part in the protocol
Integrity of version and algorithm negotiation: increase difficulty of fall-
back attacks

Advanced goalsAdvanced goals

Identity protection:

Passive or active attackers cannot learn the identities of
the protocol participants

Denial-of-service resistance:

The protocol cannot be used to exhaust memory or CPU
of the participants

The protocol cannot be used to flood third parties with
data

It is not easy to prevent the participants from completing
the protocol

DiffieDiffie--HellmanHellman

10

11

DiffieDiffie--HellmanHellman

Key exchange based on commutative public-key operations
Each party has its own secret exponent x, y
Each party sends or publishes its own public DH key
Both compute the same shared secret or key material

Public-key notations: gx, gy, DHA, DHB, DH-A, DH-B, PKB, PKB

Shared secret notations: gxy, SK, KAB, KDH

Needs authentication!

KAB = g
xy

DH Public Key

DHA = g
x

Insecure

networkA B

KAB := (g
y
)
x

KAB = (g
x
)
y

DH Public Key

DHB = g
yDHA = g

x
DHB = g

y

KAB = g
xy

12

ManMan--inin--thethe--middle (MitM) attackmiddle (MitM) attack
Diffie-Hellman is secure against passive attackers

Not possible to discover the shared secret by sniffing the network

Vulnerable to an active attack:
To A, the attacker pretends to be A
To B, the attacker pretends to be B

KAB = g
xz

DHA = g
x

A B

KAB := (g
z
)
x

KAB = (g
z
)
y

DHB = g
y

DHA =g
x

DHB=g
y

KAB = g
yz

Attacker T

DHT = g
z

KAT = g
xz

DHB =g
z

DHA =g
z

KTB = g
yz

Lecture 3

Network security, TKK, Nov 2008 3

13

Alice and BobAlice and Bob
Common informal notation for cryptographic protocols
Alice A, Bob B, Carol C, Trent T,
Client C, Server S,
Initiator I, Responder R, etc.
Diffie-Hellman:
A → B: A, gx

B → A: B, gy

SK = h(gxy)
Man-in-the-middle attack:
A → T(B): A, gx // Trent intercepts the message
T(A) → B: A, gz // Trent spoofs the message
B → T(A): B, gy // Trent intercepts the message
T(B) → A: B, gz // Trent spoofs the message

14

Authenticating DiffieAuthenticating Diffie--HellmanHellman

Certified Diffie-Hellman public keys:

A → B: A, gx, CertA

B → A: B, gy, CertB

CertA is a standard public-key certificate, e.g. X.509, where the
subject key is A’s Diffie-Hellman public key

Signed Diffie-Hellman (more common):

A → B: A, gx, SA(A, gx), CertA

B → A: B, gy, SB(B, gy), CertB

CertA is a standard public-key certificate, e.g. X.509, where the
subject key is A’s public signature key

MitM attack prevented

Still missing freshness!

15

DiffieDiffie--Hellman with nonces (1)Hellman with nonces (1)

Signed Diffie-Hellman with nonces:

A → B: A, NA, gx, SA(A, NA, gx), CertA

B → A: B, NB, gy, SB(B, NB, gy), CertB

SK = h(NA, NB, gxy)
Secret session key?
Fresh session key?
Mutual authentication?
Entity authentication?
Key confirmation?
Protection of long term secrets?
Forward secrecy?
Contributory?
Non
Integrity of negotiation?
DoS protection?
Identity protection?

Secret session key?
Fresh session key?
Mutual authentication?
Entity authentication?
Key confirmation?
Protection of long-term secrets?
Forward secrecy?
Contributory?
Non-repudiation?
Integrity of negotiation?
DoS protection?
Identity protection?

16

DiffieDiffie--Hellman with nonces (2)Hellman with nonces (2)
Signed Diffie-Hellman with nonces:
A → B: A, NA, gx, SA(A, NA, gx), CertA

B → A: B, NB, gy, SB(B, NB, gy), CertB

SK = h(NA, NB, gxy)
Properties:

Secret, fresh session key
→ Both know that SK cannot be known to anyone other than A and B
Mutual authentication
Protection of long-term secrets
Contributory
Non-repudiation or participation, but not of completion

Missing properties:
No entity authentication or key confirmation:
→ Neither party knows that the other really took part in the protocol or
that the other computer the same key
Not clear from the above spec whether it gives forward secrecy
No negotiation, so can’t say anything about that
No DoS or identity protection

17

Variation with key confirmationVariation with key confirmation

Signed Diffie-Hellman with nonces:

A → B: A, B, NA, gx, SA(A, B, NA, gx), CertA

B → A: A, B, NA, NB, gx, gy, SB(A, B, NA, NB, gx, gy), CertB

A → B: A, B, MACSK(A, B, “Done.”)

SK = h(NA, NB, gxy)

Real protocols are more
complex and have even more
variations

Version and algorithm negotiation

DoS protection

Identity protection

Secret session key?
Fresh session key?
Mutual authentication?
Entity authentication?
Key confirmation?
Protection of long term secrets?
Forward secrecy?
Contributory?
Non
Integrity of negotiation?
DoS protection?
Identity protection?

Secret session key?
Fresh session key?
Mutual authentication?
Entity authentication?
Key confirmation?
Protection of long-term secrets?
Forward secrecy?
Contributory?
Non-repudiation?
Integrity of negotiation?
DoS protection?
Identity protection?

18

Ephemeral DiffieEphemeral Diffie--HellmanHellman

Diffie-Hellman exponents can be reused
Nonces guarantee a fresh session key

Forward secrecy is achieved by using ephemeral Diffie-
Hellman exponents

Pick a fresh exponent and forget previous ones

Cost of forward secrecy:
Random-number generation for new exponents

Computation of new public keys

No changes to the protocol messages → each party can
choose how often it wants to replace its Diffie-Hellman
keys

Exponents typically replaced every day or every hour,
regardless of how many exchanges performed

Lecture 3

Network security, TKK, Nov 2008 4

Key exchange using Key exchange using
publicpublic--key encryptionkey encryption

20

PK encryption of session keyPK encryption of session key

Public-key encryption of the session key:

A → B: A, PKA

B → A: B, EA(SK)

SK = session key

EA(…) = encryption with A’s public key

Man-in-the-middle attack:

A → T(B): A, PKA // Trent intercepts the message

T(A) → B: A, PKT // Trent spoofs the message

B → T(A): B, ET(SK) // Trent intercepts the message

T(B) → A: B, EA(SK) // Trent spoofs the message

21

Authenticated key exchangeAuthenticated key exchange

Public-key encryption of the session key:

A → B: A,B, NA, CertA

B → A: A,B, NA,NB, EA(SK), SB(A,B, NA,NB, EA(SK)), CertB

A → B: A,B, MACSK(A,B, “Done.”)

SK = session key

CertA = certificate for A’s public encryption key

EA(…) = encryption with A’s public key

CertB = certificate for B’s public signature key

SB(…) = B’s signature

Secret session key?
Fresh session key?
Mutual authentication?
Entity authentication?
Key confirmation?
Protection of long term secrets?
Forward secrecy?
Contributory?
Non
Integrity of negotiation?
DoS protection?
Identity protection?

Secret session key?
Fresh session key?
Mutual authentication?
Entity authentication?
Key confirmation?
Protection of long-term secrets?
Forward secrecy?
Contributory?
Non-repudiation?
Integrity of negotiation?
DoS protection?
Identity protection?

TLS/SSLTLS/SSL

23

TLS/SSLTLS/SSL

Originally Secure Sockets Layer (SSLv3) by Netscape in
1995

Originally intended to facilitate web commerce:
Fast adoption because built into web browsers

Encrypt credit card numbers and passwords on the web

Early attitudes, especially in the IETF:
IPSec will eventually replace TLS/SSL

TLS/SSL is bad because it slows the adoption of IPSec

Now SSL/TLS is the dominant encryption standard

Standardized as Transport-Layer Security (TLSv1) by IETF
[RFC2246]

Minimal changes to SSLv3 implementations but not
interoperable

24

TLS/SSL architecture (1)TLS/SSL architecture (1)
Encryption and authentication layer added to the
protocol stack between TCP and applications.

End-to-end security between client and server,
usually web browser and server.

TCP

IP

Application

TCP

IP

Application

InternetInternet

TCP

IP

Application

TLS

TCP

IP

Application

TLS

Lecture 3

Network security, TKK, Nov 2008 5

25

TLS/SSL architecture (2)TLS/SSL architecture (2)
TLS Handshake Protocol — authenticated key exchange

TLS Record Protocol — block data delivery

Minor protocols:
Alert — error messages

Change Cipher Spec — turn on encryption or update keys

TLS

Record

Protocol

TCP

IP

TLS

Handshake

Protocol

Application data (e.g. HTTP)

General architecture of security protocols:
authenticated key exchange + session protocol

Cryptography in TLSCryptography in TLS
Many key-exchange mechanisms and algorithm suites defined
Most widely deployed cipher suite, default in TLS 1.1:
TLS_RSA_WITH_3DES_EDE_CBC_SHA

RSA = handshake: RSA-based key exchange
Key-exchange uses its own MAC composed of SHA-1 and MD5
3DES_EDE_CBC = data encryption with 3DES block cipher in EDE mode
and CBC
SHA = data authentication with HMAC-SHA-1

Default cipher suite in TLS 1.0:
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

DHE_DSS = handshake: ephemeral Diffie-Hellman key exchange
authenticated with DSS* signatures

Examples of other cipher suites:
TLS_NULL_WITH_NULL_NULL
TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA [RFC3269]

TLS handshakeTLS handshake

27 28

TLS handshake protocolTLS handshake protocol

Runs on top of TLS record protocol

Negotiates protocol version and cipher suite (i.e.
cryptographic algorithms)

Protocol versions: 3.0 = SSLv3, 3.1 = TLSv1

Cipher suite e.g. DHE_RSA_WITH_3DES_EDE_CBC_SHA

Performs authenticated key exchange

Often only server authenticated

Client Server
ClientHello

ServerHello
Certificate*

ServerKeyExchange*
CertificateRequest*

ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Application data Application data
29

TLS Handshake TLS Handshake

Optional, client typically

unauthenticated.

Client

Diffie-

Hellman

key

Server Diffie-

Hellman key

and signature

Encrypted

and

MAC’ed

session

data

1. Negotiation

2. Authentication

3. Key exchange

4. Start session
Protocol

version,

server

nonce,

cipher suite

Protocol

versions,

client

nonce,

cipher

suites

Server

certificate

Signature

30

TLS handshakeTLS handshake
1. C → S: ClientHello

2. S → C: ServerHello,
Certificate,
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

3. C → S: [Certificate],
ClientKeyExchange,
[CertificateVerify],
ChangeCipherSpec,
Finished

4. S → C: ChangeCipherSpec,
Finished

[Brackets] indicate fields for bidirectional authentication

http://www.itl.nist.gov/fipspubs/fip186.htm

Lecture 3

Network security, TKK, Nov 2008 6

31

TLS_DHE_DSS handshakeTLS_DHE_DSS handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS

g, n, gy, SignS(NC, NS, g, n, gy)
[Root CAs]

3. C → S: [CertChainC]
gx

[SignC(all previous messages including NC, NS, g, n, gy, gx)]
ChangeCipherSpec
MACSK (“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACSK("server finished“, all previous messages)

pre_master_secret = gxy

master_secret = SK = h(gxy, “master secret”, NC, NS)

Finished messages are already protected by the new session keys

1. Negotiation
2. Ephemeral Diffie-Hellman
3. Nonces
4. Signature
5. Certificates
6. Key confirmation and
negotiation integrity

32

TLS_DHE_DSS handshakeTLS_DHE_DSS handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS

g, n, gy, SignS(NC, NS, g, n, gy)
[Root CAs]

3. C → S: [CertChainC]
gx

[SignC(all previous messages including NC, NS, g, n, gy, gx)]
ChangeCipherSpec
MACSK (“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACSK("server finished“, all previous messages)

pre_master_secret = gxy

master_secret = SK = h(pre_master_secret, “master secret”, NC, NS)

Finished messages are already protected by the new session keys

Secret session key?
Fresh session key?
Mutual authentication?
Entity authentication?
Key confirmation?
Protection of long term secrets?
Forward secrecy?
Contributory?
Non
Integrity of negotiation?
DoS protection?
Identity protection?

Secret session key?
Fresh session key?
Mutual authentication?
Entity authentication?
Key confirmation?
Protection of long-term secrets?
Forward secrecy?
Contributory?
Non-repudiation?
Integrity of negotiation?
DoS protection?
Identity protection?

33

TLS_RSA handshakeTLS_RSA handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS

[Root CAs]

3. C → S: [CertChainC]
ES(pre_master_secret),
[SignC(all previous messages including NC, NS, ES(…))]
ChangeCipherSpec
MACSK (“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACSK("server finished“, all previous messages)

ES = RSA encryption (PKCS #1 v1.5) with S’s public key from CertChainS

pre_master_secret = random number chosen by C

master_secret = SK = h(pre_master_secret, “master secret”, NC, NS)

Finished messages are already protected by the new session keys

1. Negotiation
2. RSA
3. Nonces
4. Signature
5. Certificates
6. Key confirmation and
negotiation integrity

34

TLS_RSA handshakeTLS_RSA handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS

[Root CAs]

3. C → S: [CertChainC]
ES(pre_master_secret),
[SignC(all previous messages including NC, NS, g, n, gy, gx)]
ChangeCipherSpec
MACSK (“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACSK("server finished“, all previous messages)

ES = RSA encryption (PKCS #1 v1.5) with S’s public key from CertChainS

pre_master_secret = random number chosen by C

master_secret = SK = h(gxy, “master secret”, NC, NS)

Finished messages are already protected by the new session keys

Secret session key?
Fresh session key?
Mutual authentication?
Entity authentication?
Key confirmation?
Protection of long term secrets?
Forward secrecy?
Contributory?
Non
Integrity of negotiation?
DoS protection?
Identity protection?

Secret session key?
Fresh session key?
Mutual authentication?
Entity authentication?
Key confirmation?
Protection of long-term secrets?
Forward secrecy?
Contributory?
Non-repudiation?
Integrity of negotiation?
DoS protection?
Identity protection?

35

Nonces in TLSNonces in TLS

Client and Server Random are nonces

Concatenation of a real-time clock value and
random number:

struct {

uint32 gmt_unix_time;

opaque random_bytes[28];

} Random;

36

Session vs. connectionSession vs. connection

TLS session can span multiple connections

Client and server cache the session state and key

Client sends the SessionId of a cached session in Client
Hello, otherwise zero

Server responds with the same SessionId if found in
cache, otherwise with a fresh value

New master_secret calculated with new nonces for
each connection

Change of IP address does not invalidate cached
sessions

Lecture 3

Network security, TKK, Nov 2008 7

TLS record protocolTLS record protocol

38

TLS record TLS record pprotocolrotocol

For write (sending):
1. Take arbitrary-length data blocks from upper layer

2. Fragment to blocks of ≤ 4096 bytes

3. Compress the data (optional)

4. Apply a MAC

5. Encrypt

6. Add fragment header (SN, content type, length)

7. Transmit over TCP server port 443 (https)

For read (receiving):
Receive, decrypt, verify MAC, decompress,
defragment, deliver to upper layer

39

TLS record protocol TLS record protocol -- abstractionabstraction

Abstract view:
EK1 (data, HMACK2(SN, content type, length, data))

Different encryption and MAC keys in each direction

All keys and IVs are derived from the master_secret

TLS record protocol uses 64-bit unsigned integers
starting from zero for each connection

TLS works over TCP, which is reliable and preserves order.
Thus, sequence numbers must be received in exact order

TSL trust modelTSL trust model

40

41

Typical TLS Trust ModelTypical TLS Trust Model

Trust root:
web browsers come with a pre-configured list of root
CAs (e.g. Verisign)

Users can add or remove root CAs — which do you accept?

Root-CA public keys are stored in self-signed certificates

Not really a certificate; just a way of storing the CA public keys

Users usually do not have client certificates

Businesses pay a top-level CA to issue a server certificate. Client
users do not want to pay

Typically, password authentication of the user over the server-
authenticated HTTPS channel (web form or HTTP basic access
authentication)

42

TLS Certificate ExampleTLS Certificate Example

Example of a TLS certificate chain:
Nationwide (a building society in the UK)

Issuer: VeriSign Class 3 Public Primary CA

Subject: VeriSign Class 3 Public Primary CA

Self-signed certificate in

my list of trusted root CAs

Certificate chain

received in TLS

handshake

Issuer: VeriSign Class 3 Public Primary CA

Subject: CPS Incorp/VeriSign

Issuer: CPS Incorp/VeriSign

Subject: olb2.nationet.com

But how do I know that olb2.nationet.com is the
Nationwide online banking site?

Lecture 3

Network security, TKK, Nov 2008 8

43

TLS ApplicationsTLS Applications

Originally designed for web browsing

New applications:

Any TCP connection can be protected with TLS

The SOAP remote procedure call (SOAP RPC) protocol
uses HTTP as its transport protocol. Thus, SOAP can
be protected with TLS

TLS-based VPNs

EAP-TLS authentication and key exchange in wireless
LANs and elsewhere

The web-browser trust model is usually not
suitable for the new applications!

44

ExercisesExercises
Password-based protocols are generally vulnerable to offline guessing
attacks (apart from a new class of special protocols). Is TLS server
authentication + HTTP digest vulnerable to offline guessing?
Use a network sniffer (e.g. Netmon, Ethereal) to look at TLS/SSL
handshakes. Can you spot a full handshake and session reuse? Can you
see the lack of identity protection?
What factors mitigate the lack of identity protection in TLS?
In what ways do web browsers and bank web sites try to ensure that the
user knows they are connected to their bank with HTTPS, not to a
phishing site and not with unprotected HTTP?
Why is the front page of a web site often insecure (HTTP) even if the
password entry and/or later data access are secure (HTTPS)? What
security problems can this cause?
How to set up multiple secure (HTTPS) web sites behind a NAT or on a
virtual server that has only one IP address? (Try this in practice.)
How would you modify the TLS handshake to improve identity
protection? Remember that SessionId is also a traceable identifier.

